3.121 \(\int \sqrt{\tan (c+d x)} (a+i a \tan (c+d x))^2 (A+B \tan (c+d x)) \, dx\)

Optimal. Leaf size=129 \[ -\frac{2 a^2 (5 A-7 i B) \tan ^{\frac{3}{2}}(c+d x)}{15 d}+\frac{4 \sqrt [4]{-1} a^2 (B+i A) \tan ^{-1}\left ((-1)^{3/4} \sqrt{\tan (c+d x)}\right )}{d}+\frac{4 a^2 (B+i A) \sqrt{\tan (c+d x)}}{d}+\frac{2 i B \tan ^{\frac{3}{2}}(c+d x) \left (a^2+i a^2 \tan (c+d x)\right )}{5 d} \]

[Out]

(4*(-1)^(1/4)*a^2*(I*A + B)*ArcTan[(-1)^(3/4)*Sqrt[Tan[c + d*x]]])/d + (4*a^2*(I*A + B)*Sqrt[Tan[c + d*x]])/d
- (2*a^2*(5*A - (7*I)*B)*Tan[c + d*x]^(3/2))/(15*d) + (((2*I)/5)*B*Tan[c + d*x]^(3/2)*(a^2 + I*a^2*Tan[c + d*x
]))/d

________________________________________________________________________________________

Rubi [A]  time = 0.259341, antiderivative size = 129, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 36, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.139, Rules used = {3594, 3592, 3528, 3533, 205} \[ -\frac{2 a^2 (5 A-7 i B) \tan ^{\frac{3}{2}}(c+d x)}{15 d}+\frac{4 \sqrt [4]{-1} a^2 (B+i A) \tan ^{-1}\left ((-1)^{3/4} \sqrt{\tan (c+d x)}\right )}{d}+\frac{4 a^2 (B+i A) \sqrt{\tan (c+d x)}}{d}+\frac{2 i B \tan ^{\frac{3}{2}}(c+d x) \left (a^2+i a^2 \tan (c+d x)\right )}{5 d} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[Tan[c + d*x]]*(a + I*a*Tan[c + d*x])^2*(A + B*Tan[c + d*x]),x]

[Out]

(4*(-1)^(1/4)*a^2*(I*A + B)*ArcTan[(-1)^(3/4)*Sqrt[Tan[c + d*x]]])/d + (4*a^2*(I*A + B)*Sqrt[Tan[c + d*x]])/d
- (2*a^2*(5*A - (7*I)*B)*Tan[c + d*x]^(3/2))/(15*d) + (((2*I)/5)*B*Tan[c + d*x]^(3/2)*(a^2 + I*a^2*Tan[c + d*x
]))/d

Rule 3594

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*B*(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^(n + 1))/(d*f
*(m + n)), x] + Dist[1/(d*(m + n)), Int[(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^n*Simp[a*A*d*(m + n)
 + B*(a*c*(m - 1) - b*d*(n + 1)) - (B*(b*c - a*d)*(m - 1) - d*(A*b + a*B)*(m + n))*Tan[e + f*x], x], x], x] /;
 FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && GtQ[m, 1] &&  !LtQ[n, -1]

Rule 3592

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(B*d*(a + b*Tan[e + f*x])^(m + 1))/(b*f*(m + 1)), x] + Int[(a + b*Tan[e
 + f*x])^m*Simp[A*c - B*d + (B*c + A*d)*Tan[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b
*c - a*d, 0] &&  !LeQ[m, -1]

Rule 3528

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(d
*(a + b*Tan[e + f*x])^m)/(f*m), x] + Int[(a + b*Tan[e + f*x])^(m - 1)*Simp[a*c - b*d + (b*c + a*d)*Tan[e + f*x
], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && GtQ[m, 0]

Rule 3533

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(2*c^2)/f, S
ubst[Int[1/(b*c - d*x^2), x], x, Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && EqQ[c^2 + d^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \sqrt{\tan (c+d x)} (a+i a \tan (c+d x))^2 (A+B \tan (c+d x)) \, dx &=\frac{2 i B \tan ^{\frac{3}{2}}(c+d x) \left (a^2+i a^2 \tan (c+d x)\right )}{5 d}+\frac{2}{5} \int \sqrt{\tan (c+d x)} (a+i a \tan (c+d x)) \left (\frac{1}{2} a (5 A-3 i B)+\frac{1}{2} a (5 i A+7 B) \tan (c+d x)\right ) \, dx\\ &=-\frac{2 a^2 (5 A-7 i B) \tan ^{\frac{3}{2}}(c+d x)}{15 d}+\frac{2 i B \tan ^{\frac{3}{2}}(c+d x) \left (a^2+i a^2 \tan (c+d x)\right )}{5 d}+\frac{2}{5} \int \sqrt{\tan (c+d x)} \left (5 a^2 (A-i B)+5 a^2 (i A+B) \tan (c+d x)\right ) \, dx\\ &=\frac{4 a^2 (i A+B) \sqrt{\tan (c+d x)}}{d}-\frac{2 a^2 (5 A-7 i B) \tan ^{\frac{3}{2}}(c+d x)}{15 d}+\frac{2 i B \tan ^{\frac{3}{2}}(c+d x) \left (a^2+i a^2 \tan (c+d x)\right )}{5 d}+\frac{2}{5} \int \frac{-5 a^2 (i A+B)+5 a^2 (A-i B) \tan (c+d x)}{\sqrt{\tan (c+d x)}} \, dx\\ &=\frac{4 a^2 (i A+B) \sqrt{\tan (c+d x)}}{d}-\frac{2 a^2 (5 A-7 i B) \tan ^{\frac{3}{2}}(c+d x)}{15 d}+\frac{2 i B \tan ^{\frac{3}{2}}(c+d x) \left (a^2+i a^2 \tan (c+d x)\right )}{5 d}+\frac{\left (20 a^4 (i A+B)^2\right ) \operatorname{Subst}\left (\int \frac{1}{-5 a^2 (i A+B)-5 a^2 (A-i B) x^2} \, dx,x,\sqrt{\tan (c+d x)}\right )}{d}\\ &=\frac{4 \sqrt [4]{-1} a^2 (i A+B) \tan ^{-1}\left ((-1)^{3/4} \sqrt{\tan (c+d x)}\right )}{d}+\frac{4 a^2 (i A+B) \sqrt{\tan (c+d x)}}{d}-\frac{2 a^2 (5 A-7 i B) \tan ^{\frac{3}{2}}(c+d x)}{15 d}+\frac{2 i B \tan ^{\frac{3}{2}}(c+d x) \left (a^2+i a^2 \tan (c+d x)\right )}{5 d}\\ \end{align*}

Mathematica [B]  time = 4.99916, size = 272, normalized size = 2.11 \[ \frac{\cos ^3(c+d x) (a+i a \tan (c+d x))^2 (A+B \tan (c+d x)) \left (\frac{1}{15} (\cos (2 c)-i \sin (2 c)) \sqrt{\tan (c+d x)} \sec ^2(c+d x) (-5 (A-2 i B) \sin (2 (c+d x))+(33 B+30 i A) \cos (2 (c+d x))+30 i A+27 B)-\frac{4 i e^{-2 i c} (A-i B) \sqrt{-\frac{i \left (-1+e^{2 i (c+d x)}\right )}{1+e^{2 i (c+d x)}}} \tanh ^{-1}\left (\sqrt{\frac{-1+e^{2 i (c+d x)}}{1+e^{2 i (c+d x)}}}\right )}{\sqrt{\frac{-1+e^{2 i (c+d x)}}{1+e^{2 i (c+d x)}}}}\right )}{d (\cos (d x)+i \sin (d x))^2 (A \cos (c+d x)+B \sin (c+d x))} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[Tan[c + d*x]]*(a + I*a*Tan[c + d*x])^2*(A + B*Tan[c + d*x]),x]

[Out]

(Cos[c + d*x]^3*(((-4*I)*(A - I*B)*Sqrt[((-I)*(-1 + E^((2*I)*(c + d*x))))/(1 + E^((2*I)*(c + d*x)))]*ArcTanh[S
qrt[(-1 + E^((2*I)*(c + d*x)))/(1 + E^((2*I)*(c + d*x)))]])/(E^((2*I)*c)*Sqrt[(-1 + E^((2*I)*(c + d*x)))/(1 +
E^((2*I)*(c + d*x)))]) + (Sec[c + d*x]^2*(Cos[2*c] - I*Sin[2*c])*((30*I)*A + 27*B + ((30*I)*A + 33*B)*Cos[2*(c
 + d*x)] - 5*(A - (2*I)*B)*Sin[2*(c + d*x)])*Sqrt[Tan[c + d*x]])/15)*(a + I*a*Tan[c + d*x])^2*(A + B*Tan[c + d
*x]))/(d*(Cos[d*x] + I*Sin[d*x])^2*(A*Cos[c + d*x] + B*Sin[c + d*x]))

________________________________________________________________________________________

Maple [B]  time = 0.013, size = 537, normalized size = 4.2 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(d*x+c)^(1/2)*(a+I*a*tan(d*x+c))^2*(A+B*tan(d*x+c)),x)

[Out]

-2/5/d*a^2*B*tan(d*x+c)^(5/2)-I/d*a^2*A*2^(1/2)*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))-2/3/d*a^2*A*tan(d*x+c)^(3/2
)-I/d*a^2*B*2^(1/2)*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))+4/d*a^2*B*tan(d*x+c)^(1/2)-1/2*I/d*a^2*B*ln((1-2^(1/2)*
tan(d*x+c)^(1/2)+tan(d*x+c))/(1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c)))*2^(1/2)+4/3*I/d*a^2*B*tan(d*x+c)^(3/2)+4
*I/d*a^2*A*tan(d*x+c)^(1/2)-1/d*a^2*B*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2))*2^(1/2)-1/2/d*a^2*B*2^(1/2)*ln((1+2^
(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/(1-2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c)))-1/d*a^2*B*2^(1/2)*arctan(1+2^(1/2)
*tan(d*x+c)^(1/2))-1/2*I/d*a^2*A*2^(1/2)*ln((1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/(1-2^(1/2)*tan(d*x+c)^(1/2
)+tan(d*x+c)))-I/d*a^2*B*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2))*2^(1/2)-I/d*a^2*A*arctan(-1+2^(1/2)*tan(d*x+c)^(1
/2))*2^(1/2)+1/2/d*a^2*A*ln((1-2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/(1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c)))*2
^(1/2)+1/d*a^2*A*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2))*2^(1/2)+1/d*a^2*A*2^(1/2)*arctan(1+2^(1/2)*tan(d*x+c)^(1/
2))

________________________________________________________________________________________

Maxima [A]  time = 1.83083, size = 265, normalized size = 2.05 \begin{align*} -\frac{12 \, B a^{2} \tan \left (d x + c\right )^{\frac{5}{2}} + 4 \,{\left (5 \, A - 10 i \, B\right )} a^{2} \tan \left (d x + c\right )^{\frac{3}{2}} + 120 \,{\left (-i \, A - B\right )} a^{2} \sqrt{\tan \left (d x + c\right )} + 15 \,{\left (2 \, \sqrt{2}{\left (\left (i - 1\right ) \, A + \left (i + 1\right ) \, B\right )} \arctan \left (\frac{1}{2} \, \sqrt{2}{\left (\sqrt{2} + 2 \, \sqrt{\tan \left (d x + c\right )}\right )}\right ) + 2 \, \sqrt{2}{\left (\left (i - 1\right ) \, A + \left (i + 1\right ) \, B\right )} \arctan \left (-\frac{1}{2} \, \sqrt{2}{\left (\sqrt{2} - 2 \, \sqrt{\tan \left (d x + c\right )}\right )}\right ) - \sqrt{2}{\left (-\left (i + 1\right ) \, A + \left (i - 1\right ) \, B\right )} \log \left (\sqrt{2} \sqrt{\tan \left (d x + c\right )} + \tan \left (d x + c\right ) + 1\right ) + \sqrt{2}{\left (-\left (i + 1\right ) \, A + \left (i - 1\right ) \, B\right )} \log \left (-\sqrt{2} \sqrt{\tan \left (d x + c\right )} + \tan \left (d x + c\right ) + 1\right )\right )} a^{2}}{30 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(1/2)*(a+I*a*tan(d*x+c))^2*(A+B*tan(d*x+c)),x, algorithm="maxima")

[Out]

-1/30*(12*B*a^2*tan(d*x + c)^(5/2) + 4*(5*A - 10*I*B)*a^2*tan(d*x + c)^(3/2) + 120*(-I*A - B)*a^2*sqrt(tan(d*x
 + c)) + 15*(2*sqrt(2)*((I - 1)*A + (I + 1)*B)*arctan(1/2*sqrt(2)*(sqrt(2) + 2*sqrt(tan(d*x + c)))) + 2*sqrt(2
)*((I - 1)*A + (I + 1)*B)*arctan(-1/2*sqrt(2)*(sqrt(2) - 2*sqrt(tan(d*x + c)))) - sqrt(2)*(-(I + 1)*A + (I - 1
)*B)*log(sqrt(2)*sqrt(tan(d*x + c)) + tan(d*x + c) + 1) + sqrt(2)*(-(I + 1)*A + (I - 1)*B)*log(-sqrt(2)*sqrt(t
an(d*x + c)) + tan(d*x + c) + 1))*a^2)/d

________________________________________________________________________________________

Fricas [B]  time = 1.95193, size = 1193, normalized size = 9.25 \begin{align*} -\frac{15 \, \sqrt{\frac{{\left (16 i \, A^{2} + 32 \, A B - 16 i \, B^{2}\right )} a^{4}}{d^{2}}}{\left (d e^{\left (4 i \, d x + 4 i \, c\right )} + 2 \, d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \log \left (\frac{{\left (4 \,{\left (A - i \, B\right )} a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + \sqrt{\frac{{\left (16 i \, A^{2} + 32 \, A B - 16 i \, B^{2}\right )} a^{4}}{d^{2}}}{\left (d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \sqrt{\frac{-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{{\left (2 i \, A + 2 \, B\right )} a^{2}}\right ) - 15 \, \sqrt{\frac{{\left (16 i \, A^{2} + 32 \, A B - 16 i \, B^{2}\right )} a^{4}}{d^{2}}}{\left (d e^{\left (4 i \, d x + 4 i \, c\right )} + 2 \, d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \log \left (\frac{{\left (4 \,{\left (A - i \, B\right )} a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} - \sqrt{\frac{{\left (16 i \, A^{2} + 32 \, A B - 16 i \, B^{2}\right )} a^{4}}{d^{2}}}{\left (d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \sqrt{\frac{-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{{\left (2 i \, A + 2 \, B\right )} a^{2}}\right ) -{\left ({\left (280 i \, A + 344 \, B\right )} a^{2} e^{\left (4 i \, d x + 4 i \, c\right )} +{\left (480 i \, A + 432 \, B\right )} a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} +{\left (200 i \, A + 184 \, B\right )} a^{2}\right )} \sqrt{\frac{-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}}{60 \,{\left (d e^{\left (4 i \, d x + 4 i \, c\right )} + 2 \, d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(1/2)*(a+I*a*tan(d*x+c))^2*(A+B*tan(d*x+c)),x, algorithm="fricas")

[Out]

-1/60*(15*sqrt((16*I*A^2 + 32*A*B - 16*I*B^2)*a^4/d^2)*(d*e^(4*I*d*x + 4*I*c) + 2*d*e^(2*I*d*x + 2*I*c) + d)*l
og((4*(A - I*B)*a^2*e^(2*I*d*x + 2*I*c) + sqrt((16*I*A^2 + 32*A*B - 16*I*B^2)*a^4/d^2)*(d*e^(2*I*d*x + 2*I*c)
+ d)*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)))*e^(-2*I*d*x - 2*I*c)/((2*I*A + 2*B)*a^2)) -
 15*sqrt((16*I*A^2 + 32*A*B - 16*I*B^2)*a^4/d^2)*(d*e^(4*I*d*x + 4*I*c) + 2*d*e^(2*I*d*x + 2*I*c) + d)*log((4*
(A - I*B)*a^2*e^(2*I*d*x + 2*I*c) - sqrt((16*I*A^2 + 32*A*B - 16*I*B^2)*a^4/d^2)*(d*e^(2*I*d*x + 2*I*c) + d)*s
qrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)))*e^(-2*I*d*x - 2*I*c)/((2*I*A + 2*B)*a^2)) - ((280
*I*A + 344*B)*a^2*e^(4*I*d*x + 4*I*c) + (480*I*A + 432*B)*a^2*e^(2*I*d*x + 2*I*c) + (200*I*A + 184*B)*a^2)*sqr
t((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)))/(d*e^(4*I*d*x + 4*I*c) + 2*d*e^(2*I*d*x + 2*I*c) +
d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)**(1/2)*(a+I*a*tan(d*x+c))**2*(A+B*tan(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.2419, size = 171, normalized size = 1.33 \begin{align*} -\frac{\left (i - 1\right ) \, \sqrt{2}{\left (8 \, A a^{2} - 8 i \, B a^{2}\right )} \arctan \left (-\left (\frac{1}{2} i - \frac{1}{2}\right ) \, \sqrt{2} \sqrt{\tan \left (d x + c\right )}\right )}{4 \, d} - \frac{6 \, B a^{2} d^{4} \tan \left (d x + c\right )^{\frac{5}{2}} + 10 \, A a^{2} d^{4} \tan \left (d x + c\right )^{\frac{3}{2}} - 20 i \, B a^{2} d^{4} \tan \left (d x + c\right )^{\frac{3}{2}} - 60 i \, A a^{2} d^{4} \sqrt{\tan \left (d x + c\right )} - 60 \, B a^{2} d^{4} \sqrt{\tan \left (d x + c\right )}}{15 \, d^{5}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(1/2)*(a+I*a*tan(d*x+c))^2*(A+B*tan(d*x+c)),x, algorithm="giac")

[Out]

-(1/4*I - 1/4)*sqrt(2)*(8*A*a^2 - 8*I*B*a^2)*arctan(-(1/2*I - 1/2)*sqrt(2)*sqrt(tan(d*x + c)))/d - 1/15*(6*B*a
^2*d^4*tan(d*x + c)^(5/2) + 10*A*a^2*d^4*tan(d*x + c)^(3/2) - 20*I*B*a^2*d^4*tan(d*x + c)^(3/2) - 60*I*A*a^2*d
^4*sqrt(tan(d*x + c)) - 60*B*a^2*d^4*sqrt(tan(d*x + c)))/d^5